Worksheet for 2021-11-29

Warm-up

Question 1. Let *C* be a clockwise closed curve in the plane which encloses some region *D*. Which of the following integrals computes the area of *D*? (What are the values of the other integrals?)

$$\int_C x \, \mathrm{d}x, \quad \int_C (x \, \mathrm{d}y - y \, \mathrm{d}x), \quad \int_C y \, \mathrm{d}x$$

Question 2. Show that the angle formed between the *xy*-plane and any tangent plane of the parametric surface $\mathbf{r}(z, \theta) = \langle z \cos \theta, z \sin \theta, z \rangle$ is always the same, and find this angle. Also identify what surface this is.

Question 3. Suppose that **F** is a vector field in \mathbb{R}^3 that is always parallel to the *xy*-plane, i.e. it has zero *z*-component. Does it follow that $\nabla \times \mathbf{F}$ is vertical at all points?

Computations

These problems are taken from last year's final, with slight adjustments.

Problem 1. Let P(t), Q(t), R(t) be single-variable functions. Define f(x, y, z) as

$$f(x, y, z) = \int_0^x P(t) dt + \int_0^y Q(t) dt + \int_0^z R(t) dt.$$

Let $\mathbf{F} = \nabla f$.

- (a) Compute **F** in terms of *P*, *Q*, *R*.
- (b) Let *S* be the hemisphere $x^2 + y^2 + z^2 = 1, z \ge 0$, oriented upwards. Let ∂S be the oriented boundary of *S*. Compute

$$\int_{\partial S} (\nabla \times \mathbf{F}) \cdot d\mathbf{r}.$$

Problem 2. Let **F** be the vector field $\langle x - \frac{2}{3}x^3, -\frac{4}{3}y^3, -\frac{8}{3}z^3 \rangle$. Find the closed surface *S* in \mathbb{R}^3 which maximizes the value of the (outwards) flux integral

$$\iint_{S} \mathbf{F} \cdot \mathbf{dS}.$$

Problem 3. Suppose that *S* is a closed surface parametrized by *s*, *t* over the region $0 \le t \le 1$, $0 \le s \le 2$. Show that the volume enclosed by *S* is

$$\left|\frac{1}{3}\int_{0}^{1}\int_{0}^{2}\left(x\left(\frac{\partial y}{\partial s}\frac{\partial z}{\partial t}-\frac{\partial y}{\partial t}\frac{\partial z}{\partial s}\right)+y\left(\frac{\partial x}{\partial t}\frac{\partial z}{\partial s}-\frac{\partial x}{\partial s}\frac{\partial z}{\partial t}\right)+z\left(\frac{\partial x}{\partial s}\frac{\partial y}{\partial t}-\frac{\partial x}{\partial t}\frac{\partial y}{\partial s}\right)\right)ds\,dt\right|$$

(where the integrand is understood to be written in terms of *s*, *t*).

Problem 4. Let Γ be the parametrized polar curve r = t, $\theta = 8\pi t$, $0 \le t \le 1$.

- (a) Rewrite Γ as an ordinary parametric curve x = f(t), y = g(t).
- (b) Compute $\int_{\Gamma} \langle x, y \rangle \cdot d\mathbf{r}$.