Worksheet for 2021-11-29

Warm-up

Question 1. Let C be a clockwise closed curve in the plane which encloses some region D. Which of the following integrals computes the area of D ? (What are the values of the other integrals?)

$$
\int_{C} x \mathrm{~d} x, \quad \int_{C}(x \mathrm{~d} y-y \mathrm{~d} x), \quad \int_{C} y \mathrm{~d} x
$$

Question 2. Show that the angle formed between the $x y$-plane and any tangent plane of the parametric surface $\mathbf{r}(z, \theta)=$ $\langle z \cos \theta, z \sin \theta, z\rangle$ is always the same, and find this angle. Also identify what surface this is.
Question 3. Suppose that \mathbf{F} is a vector field in \mathbb{R}^{3} that is always parallel to the $x y$-plane, i.e. it has zero z-component. Does it follow that $\nabla \times \mathbf{F}$ is vertical at all points?

Computations

These problems are taken from last year's final, with slight adjustments.
Problem 1. Let $P(t), Q(t), R(t)$ be single-variable functions. Define $f(x, y, z)$ as

$$
f(x, y, z)=\int_{0}^{x} P(t) \mathrm{d} t+\int_{0}^{y} Q(t) \mathrm{d} t+\int_{0}^{z} R(t) \mathrm{d} t .
$$

Let $\mathbf{F}=\nabla f$.
(a) Compute \mathbf{F} in terms of P, Q, R.
(b) Let S be the hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$, oriented upwards. Let ∂S be the oriented boundary of S. Compute

$$
\int_{\partial S}(\nabla \times \mathbf{F}) \cdot \mathrm{d} \mathbf{r}
$$

Problem 2. Let \mathbf{F} be the vector field $\left\langle x-\frac{2}{3} x^{3},-\frac{4}{3} y^{3},-\frac{8}{3} z^{3}\right\rangle$. Find the closed surface S in \mathbb{R}^{3} which maximizes the value of the (outwards) flux integral

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

Problem 3. Suppose that S is a closed surface parametrized by s, t over the region $0 \leq t \leq 1,0 \leq s \leq 2$. Show that the volume enclosed by S is

$$
\left|\frac{1}{3} \int_{0}^{1} \int_{0}^{2}\left(x\left(\frac{\partial y}{\partial s} \frac{\partial z}{\partial t}-\frac{\partial y}{\partial t} \frac{\partial z}{\partial s}\right)+y\left(\frac{\partial x}{\partial t} \frac{\partial z}{\partial s}-\frac{\partial x}{\partial s} \frac{\partial z}{\partial t}\right)+z\left(\frac{\partial x}{\partial s} \frac{\partial y}{\partial t}-\frac{\partial x}{\partial t} \frac{\partial y}{\partial s}\right)\right) \mathrm{d} s \mathrm{~d} t\right|
$$

(where the integrand is understood to be written in terms of s, t).
Problem 4. Let Γ be the parametrized polar curve $r=t, \theta=8 \pi t, 0 \leq t \leq 1$.
(a) Rewrite Γ as an ordinary parametric curve $x=f(t), y=g(t)$.
(b) Compute $\int_{\Gamma}\langle x, y\rangle \cdot \mathrm{dr}$.

